Difference: CMSSusyAnalysisResultsTest (26 vs. 27)

Revision 272015-10-12 - JanosKarancsi

Line: 1 to 1
Changed:
<
<
- TTbar samples
Sample A (0.2<R<0.4, <2 top) B (R>0.4, <2 top) C (0.2<R<0.4, 2 top) D = B*C/A pred. D (R>0.4, 2 top) obs. Ratio pred./obs. Pull (pred-obs)/error KS test
TTJetsHT600 25.18 +- 0.16 2.09 +- 0.05 12.49 +- 0.11 1.04 +- 0.03 0.82 +- 0.03 1.27 +- 0.05 5.70 0.00
-> All Bkg. 399.23 +- 13.06 9.45 +- 1.01 85.58 +- 5.61 2.03 +- 0.26 2.10 +- 0.18 0.97 +- 0.15 -0.22 0.00
TTHerwig 34.09 +- 1.90 2.43 +- 0.51 25.33 +- 1.63 1.80 +- 0.41 1.37 +- 0.38 1.31 +- 0.47 0.78 0.69
-> All Bkg. 408.13 +- 13.20 9.79 +- 1.13 98.41 +- 5.85 2.36 +- 0.32 2.65 +- 0.42 0.89 +- 0.18 -0.55 0.00
TTPowhegPythia6 27.98 +- 1.77 1.80 +- 0.45 17.53 +- 1.40 1.13 +- 0.30 0.67 +- 0.28 1.67 +- 0.82 1.10 0.57
-> All Bkg. 402.02 +- 13.18 9.16 +- 1.11 90.61 +- 5.79 2.06 +- 0.29 1.95 +- 0.33 1.06 +- 0.23 0.25 0.00
TTPowhegPythia8 41.90 +- 2.09 3.97 +- 0.64 23.09 +- 1.55 2.19 +- 0.40 1.25 +- 0.36 1.75 +- 0.60 1.73 0.27
-> All Bkg. 415.95 +- 13.23 11.33 +- 1.20 96.18 +- 5.82 2.62 +- 0.33 2.53 +- 0.40 1.03 +- 0.21 0.17 0.00
TTJetsNLO 54.79 +- 1.63 4.14 +- 0.45 32.94 +- 1.27 2.49 +- 0.30 1.80 +- 0.30 1.38 +- 0.28 1.64 0.00
-> All Bkg. 428.84 +- 13.16 11.50 +- 1.11 106.03 +- 5.75 2.84 +- 0.33 3.08 +- 0.35 0.92 +- 0.15 -0.50 0.00
TTNLO 88.22 +- 3.12 6.40 +- 0.84 51.78 +- 2.39 3.76 +- 0.54 2.54 +- 0.53 1.48 +- 0.37 1.61 0.00
-> All Bkg. 462.27 +- 13.43 13.77 +- 1.32 124.87 +- 6.10 3.72 +- 0.41 3.82 +- 0.56 0.97 +- 0.18 -0.14 0.00

- Use AK4 jets for R, a'la Razor recipe

>
>
1) Use AK4 jets for R, a'la Razor recipe
  Used Old JEC MC samples
Cut T5ttttDeg_mGo1000_4bodydec TTJetsHT600 WJets ZJetsToNuNu TTV QCD DibosonDec All bg Smin = Eff./(5/2+sqrt(B))
Line: 27 to 12
  (I will also do a tt-pair R vs AK8 R comparison which might be useful)
Changed:
<
<
- Try shrinking R control region from [0,0.4] to [~0.3,0.4]
>
>
2) Try shrinking R control region from [0,0.4] to [~0.3,0.4]
  R sideband: [0,0.4]
Sample A (R<0.4, SB) B (R>0.4, SB) C (R<0.4, Sig.B.) D = B*C/A pred. D (R>0.4, Sig.B.) obs. Ratio pred./obs. Pull (pred-obs)/error KS test
Line: 70 to 55
  This works! The TTbar prediction is closer to the actual values. I used [0.2, 0.4] bin so the statistical precision doesn't decrease, we need to have a little bit of compromise here to keep statistical error low but also having a better TTbar estimate. Signal contamination is also less in this bin.
Changed:
<
<
- Show yields for all 8 boxes defined by 3-axis: R, Ntop, DPhi
>
>
3) How would we treat signal pollution ? Show yields for all 8 boxes defined by 3-axis: R, Ntop, DPhi
  R sideband: [0.2,0.4] - DPhi>2.7
Changed:
<
<
Sample A' (0.2<R<0.4, <2 top) B' (R>0.4, <2 top) C' (0.2<R<0.4, 2 top) D' = B'*C'/A' pred. D' (R>0.4, 2 top) obs. Ratio pred./obs. Pull (pred-obs)/error KS test
>
>
Sample A' (0.2<R<0.4, <2 top) B' (R>0.4, <2 top) C' (0.2<R<0.4, 2 top) D = B*C/A pred. D' (R>0.4, 2 top) obs. Ratio pred./obs. Pull (pred-obs)/error KS test
 
TTJetsHT600 52.76 +- 0.24 1.81 +- 0.04 23.89 +- 0.16 0.82 +- 0.02 0.83 +- 0.03 0.99 +- 0.04 -0.23 0.00
WJets 63.94 +- 0.80 1.87 +- 0.14 16.39 +- 0.41 0.48 +- 0.04 0.55 +- 0.08 0.87 +- 0.14 -0.80 0.00
ZJetsToNuNu 10.56 +- 0.33 0.46 +- 0.07 2.10 +- 0.15 0.09 +- 0.02 0.09 +- 0.03 0.97 +- 0.36 -0.07 1.00
Line: 83 to 69
 
Diboson 3.01 +- 0.30 0.14 +- 0.06 1.08 +- 0.19 0.05 +- 0.02 0.04 +- 0.02 1.30 +- 0.79 0.41 0.71
Sum Bkg. 5795.61 +- 66.01 12.24 +- 1.35 1265.66 +- 31.87 3.33 +- 0.09 3.84 +- 0.81 0.87 +- 0.18 -0.62 -
All Bkg. 5795.61 +- 66.01 12.24 +- 1.35 1265.66 +- 31.87 2.67 +- 0.30 3.84 +- 0.81 0.70 +- 0.17 -1.35 0.00
Deleted:
<
<
Combined Bkg.       3.45 +- 0.09 5.10 +- 0.66 0.68 +- 0.09 -2.48 -
 
T5ttttDeg _mGo1000_4bodydec 5.90 +- 0.32 1.12 +- 0.14 7.69 +- 0.36 1.47 +- 0.21 1.24 +- 0.15 1.18 +- 0.22 0.86 0.79
Added:
>
>
In |Dphi|<2.7, signal pollution is: A: ~1% B: 120% C: ~6%

In |DPhi|>2.7, the signal pollution is one order of magnitude smaller! A': 0.1% B': 9% C~: 0.6%

A'/C' ratio is very similar to the A/C ratio, we can substitute that instead. The B/B' background ratio could be taken from MC and use it to scale the number of events in B' to have an order of magnitude less polluted estimate for B and then D).

D is then: D = (B/B')_MC * B' * C' / A' = (9.45/12.24) * 13.36 * 1273.35 / 5801.51 = 2.26

c.f: 2.10 with no signal contamination. The error then is around the signal pollution level of B' which can also be substracted maybe, but it's definitaley lower than ABCD only prediction. i.e: Polluted A/B/C would cause: D_poll = B_poll * C_poll / A_poll = 4.67 --> This would be much larger and therefore it is a legitimate question

This method I think looks good! Is this the logic you described, Petar?

4) Try other TTbar samples as a comparison

Sample A (0.2<R<0.4, <2 top) B (R>0.4, <2 top) C (0.2<R<0.4, 2 top) D = B*C/A pred. D (R>0.4, 2 top) obs. Ratio pred./obs. Pull (pred-obs)/error KS test
TTJetsHT600 25.18 +- 0.16 2.09 +- 0.05 12.49 +- 0.11 1.04 +- 0.03 0.82 +- 0.03 1.27 +- 0.05 5.70 0.00
-> All Bkg. 399.23 +- 13.06 9.45 +- 1.01 85.58 +- 5.61 2.03 +- 0.26 2.10 +- 0.18 0.97 +- 0.15 -0.22 0.00
TTHerwig 34.09 +- 1.90 2.43 +- 0.51 25.33 +- 1.63 1.80 +- 0.41 1.37 +- 0.38 1.31 +- 0.47 0.78 0.69
-> All Bkg. 408.13 +- 13.20 9.79 +- 1.13 98.41 +- 5.85 2.36 +- 0.32 2.65 +- 0.42 0.89 +- 0.18 -0.55 0.00
TTPowhegPythia6 27.98 +- 1.77 1.80 +- 0.45 17.53 +- 1.40 1.13 +- 0.30 0.67 +- 0.28 1.67 +- 0.82 1.10 0.57
-> All Bkg. 402.02 +- 13.18 9.16 +- 1.11 90.61 +- 5.79 2.06 +- 0.29 1.95 +- 0.33 1.06 +- 0.23 0.25 0.00
TTPowhegPythia8 41.90 +- 2.09 3.97 +- 0.64 23.09 +- 1.55 2.19 +- 0.40 1.25 +- 0.36 1.75 +- 0.60 1.73 0.27
-> All Bkg. 415.95 +- 13.23 11.33 +- 1.20 96.18 +- 5.82 2.62 +- 0.33 2.53 +- 0.40 1.03 +- 0.21 0.17 0.00
TTJetsNLO 54.79 +- 1.63 4.14 +- 0.45 32.94 +- 1.27 2.49 +- 0.30 1.80 +- 0.30 1.38 +- 0.28 1.64 0.00
-> All Bkg. 428.84 +- 13.16 11.50 +- 1.11 106.03 +- 5.75 2.84 +- 0.33 3.08 +- 0.35 0.92 +- 0.15 -0.50 0.00
TTNLO 88.22 +- 3.12 6.40 +- 0.84 51.78 +- 2.39 3.76 +- 0.54 2.54 +- 0.53 1.48 +- 0.37 1.61 0.00
-> All Bkg. 462.27 +- 13.43 13.77 +- 1.32 124.87 +- 6.10 3.72 +- 0.41 3.82 +- 0.56 0.97 +- 0.18 -0.14 0.00

Warning: NLO event weights are not correct (negative gen-weights aren't subtracted), but the obs/predicted ratio is still useful - Overall number of ttbar events are around ~1+-0.4, prediction to observed ratio: ~1.4+-0.3 - In all cases, the overall event number prediction stays very close to the observed number of events: ratio: 0.97 +-0.09, pulls are low too

5) Why TT+W/Z not similar to ttbar? Plot DeltaPhi shape for TTV

Plots attached. For some reason the Dphi distribution looks very similar regardless the Ntop/Dphi bin. These are NLO samples, so I will need to correct for the negative weights.

6) When backgrounds are combined scaling might not work: --> Try mixing together different ratios of bacgrounds to check how robust the method is

Sample A (0.2<R<0.4, <2 top) B (R>0.4, <2 top) C (0.2<R<0.4, 2 top) D = B*C/A pred. D (R>0.4, 2 top) obs. Ratio pred./obs. Pull (pred-obs)/error KS test
All xsec=1 399.23 +- 13.06 9.45 +- 1.01 85.58 +- 5.61 2.03 +- 0.26 2.10 +- 0.18 0.97 +- 0.15 -0.22 0.00
QCD x2 756.60 +- 26.10 12.08 +- 1.95 153.87 +- 11.21 2.46 +- 0.44 2.24 +- 0.24 1.10 +- 0.23 0.43 0.00
TT/TTV x2 425.49 +- 13.07 11.72 +- 1.02 98.87 +- 5.62 2.72 +- 0.29 3.06 +- 0.19 0.89 +- 0.11 -0.97 0.00
Rest x2 414.81 +- 13.11 14.00 +- 1.16 89.56 +- 5.65 3.02 +- 0.33 3.08 +- 0.32 0.98 +- 0.15 -0.12 0.00
TT/TTV x5 504.28 +- 13.09 18.54 +- 1.04 138.75 +- 5.64 5.10 +- 0.38 5.97 +- 0.24 0.85 +- 0.07 -1.93 0.00

If I scale ttbar by 2 times the cross section, the pull gets larger, the ratio is sligthly lower, but still within statistical error. - Should we apply a ~3% correction to account for this? - If I blow up ttbar to x5 xsec, the ratio is still 0.85 --> Should we simply add a systematic error?

The method seems to be very robust.

7) Try to find a way to describe why the method works from first principles Plot correlation of Razor variables for all regions of the ABCD methods in TTbar (and other) samples, eg: a) DeltaPhi vs MR/MTR for Ntop==2 and Ntop<2

The MTR vs DPhi plots show no correlation, that's great. MR vs DPhi shows some correlation, but I have an idea: MR for the top-pair is uncorrelated to DPhi, this is potentially useful. But I have to update my top-pair definition to the latest recipe and rerun the code.

I am planning to do a full AK4/AK8/TT - R comparison to settle this issue (I already did for Phys14, but I only checked signal efficiency, which was very similar).

Hopefully TT-R is uncorrelated to DPhi and then the explanation why the method works might be finally there.

b) MR/MTR vs Ntop for DeltaPhi <2.7 and DeltaPhi >2.7

I missed these plots, sorry. They are on my to-do list.

 
 
This site is powered by the TWiki collaboration platform Powered by Perl This site is powered by the TWiki collaboration platformCopyright &© by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback